The Link between Regional Trade of Kenya, Uganda and Tanzania and Sustainability of the Countries

Millicent Adaeze Okoli1* and Ibrahim Abegunde2

1Post graduate student, Faculty of International Trade & Finance, Makerere University, Uganda.
2Lecturer, Faculty of International Trade & Finance, Makerere University, Uganda.
*Corresponding Author’s Email: adaexe2011@hotmail.com

Abstract

Purpose: The purpose of this study was to investigate the link between regional trade of Kenya, Uganda and Tanzania and sustainability of the countries.

Methodology: The study utilized a nonexperimental panel study. Panel data analysis was adopted in this study because of the sample size and the data used is cross-sectional. To test for autocorrelation, two common tests were used. That is the Baltagi and Wu’s LBI test or the Durbin Watson modified test. These tests are able to handle all sorts of panel data with minimal bias and great efficiency.

Results: The region recorded an average 26.02% GDP investment rate. There was an average 41.99 percent and 2.03 percent growth in extra regional and intraregional trade respectively. This clearly showed that the EAC countries (Kenya, Tanzania and Uganda) have participated more in trade with other non-EAC member states than with EAC member states.

Conclusion: From the empirical findings, this study concludes that sustainability and trade in the Kenya, Uganda and Tanzania have a relationship that varies across countries. Kenya has a significant unidirectional relationship between intra-regional trade and the growth of GDP per capita while all the other countries reveal that such a relationship does not exist.

Recommendation: Policy recommendations suggested that Kenya, Uganda, and Tanzania presidents should implement strategies that enhance cooperation and integration. This is the case because empirical results indicate intra-regional trade contributes a huge chunk with respect to economic growth in the EAC countries.

Keywords: Regional trade, Kenya, Uganda, Tanzania, sustainability.
1.0 Introduction

1.1 Background of the Study

The earliest form of regional integration arrangements in East Africa was a customs union which took place in 1917 involving Kenya, Tanzania and Uganda. The members signed a division of assets and liabilities agreement in 1984 after dissolution of the former EAC in 1977 (Geda, 2015). A Permanent Tripartite Commission of East Africa was then formed in November 1993 to focus on the regional cooperation aspects. This commission would later become the policy-making organ of Kenya, Uganda and Tanzania union. On 14th March 1996 a Secretariat of the Permanent Tripartite Commission was established and with its headquarters located in Arusha Tanzania (Aunga, 2017). Following the need to guard regional cooperation, plans were then established with the view of turning the commission into a treaty in the year 1997.

Economic growth is affected by trade in a number of ways. To begin with, exchange of knowledge in research and development issues occurs as a result of trade. In this way, new innovations are shared among trading partners and this eventually leads to economic growth (Gianni, 2012). Secondly, competition increases in the local market due to higher trade openness thereby improving on productivity and which results to growth (Lubua, 2017). Msollo (2019) argue that countries with more trade flows with a high degree of market liberalization tend to register high growth rates evidenced in their high GDP per capita. Counter arguments to that view have however been raised by some scholars who hold the view that market openness adversely affects economic growth through erosion of competitive advantage, abuse of comparative advantage and exposure to increased competition among other reasons. Some confusing results have also risen from previous research. For example, membership of the European Union was found to have no growth effects on constituent member states Brynes (2017). In some other research, Henrickson established that membership in the same union produced a long-term growth force ranging between 0.6 percent and 1.3 percent per annum.

Such significant differences have however been attributed to the poor correlation between market liberalization process and the variables of concern. Thirdly, many countries have experienced increased economic growth as a result of trade widening of markets for their goods. On the contrary, economies restricted to smaller markets have continued to register small economic growth rates (Sakyi, 2015). Fourthly, participation in international trade allows countries to adopt prudent economic policies that cater for internal interests.

These policies are founded on stable macroeconomic foundations that allow the accumulation and increase of various factors of production e.g. capital within an economy. In the long run, these economies achieve high levels of growth which can only be traced back to engagement in international trade agreements. Generally, increased exposure to trade serves as a good catalyst of growth as evidenced in a number of economies. This view is further supported by Joy (2016) who attribute the rising economic growth rate of many countries in Africa to the existence of strong regional trade agreements being experienced in the continent and which thrive on a stable foundation of trade reforms and sound policies. Integration helps countries achieve many benefits. For instance, agreements for regional integration widens up markets for goods and services thus allowing companies and industries to access a bigger market. Such arrangements enable economies to take advantage of economies of scale thereby leading to accelerated growth. Integration also accelerates trade across inter-country borders with the result being increased monetary gains to the
countries involved (Wang, 2015). However, economic theory has not been able to determine whether the economic benefits of integration are short term or can be sustained in the long term. This, therefore, leaves a gap that requires empirical work to ascertain the truth of the matter.

The EAC treaty spells out that the community shall pursue all available measures of fostering integration across a number of priority sectors such as research and development, defense, political and economic affairs among others. As defined in the Article 5 paragraph 2 of EAC Treaty (2002), the member countries agreed to create in phases a Customs Union and then progress to other high levels of integration with a political Federation being the ultimate aim. This was aimed at strengthening industrial cooperation, increase infrastructural developments and increase socio-cultural relations among people. The establishment of a new EAC emanated from various concerns such as the desire for industrialization, need to reduce unemployment, achievement of high economic output, reduction of economic debts and the need to reduce poverty levels (Binda, 2015). In addition, there was poor infrastructure, lack of macroeconomic stability, poor health and education indicators and little technological readiness which challenges could be tackled with the revival of EAC (Hartzenberg, 2011). According to the World Economic Forum 2010, key hindrances to business in the EAC region include limited access to finance, high levels of corruption, excessive taxation, and slow infrastructural development.

1.2 Statement of the Problem

While total intra-regional trade shows an increasing trend over the period between 2002 and 2013 for the Kenya, Uganda and Tanzania, the extra-regional trade seems to be growing faster yet their proportions to total trade shows they are almost constant. Economic growth on the other hand has not been consistent as it has been varying over the years more than would be expected. Kenya, Uganda and Tanzania trade is expected to drive the sustainability of the three countries but its proportion relative to total trade is ranked the lowest among other RTAs like EU, NAFTA and SADC (Ouma, 2015). One of the provisions to increase the Kenya, Uganda and Tanzania intra-trade leading to the formation of the EAC is Article 75 of the Treaty and the Customs Union (CU) Protocol. It provides a number of elements which include elimination of internal tariffs and other charges of equivalent effect elimination of non-tariff barriers; establishment of a Common External Tariff (CET); duty drawback, refund and remission of duties and taxes, among others. It was anticipated that implementation of these provisions would increase the value and volume of trade within the EAC (Shinyekwa & Othieno, 2013). GDP growth rate analysis shows a major disconnect between deepening integration and sustainability within a common market stage. Thus there is need to find out why sustainability has dwindled yet major strides have been experienced especially in recent years following integration efforts. Therefore, one may ask whether economic sustainability is influenced by regional integration.

1.3 General Objective

The general objective of the study was to investigate the link between regional trade of Kenya, Uganda and Tanzania and sustainability of the countries.
2.0 Literature Review

2.1 Theoretical Review

2.2.1 Comparative Advantage Theory

The comparative advantage theory encourages countries to produce goods with low opportunity costs for them to achieve high standards of economic sustainability. It further argues that countries should channel their resources in production of goods where they are more efficient and import where they are less efficient. This theory therefore suggests that economic agents should compare opportunity costs involved in the production of goods across countries rather than the monetary costs involved (Her, 2017). The Kenya, Uganda and Tanzania member countries primarily deal with the same products i.e. agricultural goods and import mainly machinery from developed countries since they have same resource endowments.

2.2.2 The Customs Union Theory

On the other hand, the Customs Union theory as advanced by Pormer (2014) argues tariffs on trade between member states of a customs union should be lowered, and a joint tariff be imposed on all imports from non-member states. This then results in two outcomes namely trade creation and trade diversion. Trade creation occurs when economic agents shift from domestic production with high costs to low cost production in other member states within the customs union. Trade diversion then occurs in cases where member states have to shift from low-cost external production to high-cost production among member states of the customs union. Therefore, trade creation improves welfare and the complete opposite happens in the case of trade diversion.

2.2.3 The Modern Theories of Trade

Gravity model and the CGE (Computable General Equilibrium) model are also used to analyze international trade arrangements. The Gravity model has managed to predict trade patterns for goods and services between various countries. It argues that trade arrangements between two countries occur as a result of the respective sizes of the two economies involved and the distance between them. A gravity relationship, therefore, occurs in the sense that trade costs increase with the distance between the two countries involved in trade. This theory has been instrumental in the identification of the drivers behind mutual trade flows e.g. common currencies and common borders. Many economic policies have been formulated based on the use of gravity models which are very popular due to their suitability in making empirical conclusions (Robinson, 2018).

However, standard gravity factors address only two-thirds of the global trade. Thus, this makes the gravity theory unattractive for the one-third of the global trade which may be relevant for this study. The Computable General Equilibrium models also called the AGE (Applied General Equilibrium) models are economic models used to estimate how economies of countries involved in trade agreements can adjust to changes in technology and other external factors that affect trade. CGE models borrow from input-output models, models for planning for developing countries and also models used in economic planning for richer countries. They assist policymakers to detect the economic impacts of a change of one section of the economy upon the rest. Currently, one of the most popular CGE models is the GTAP model of world trade which has been used in many countries in economic growth planning. Such models are instrumental in economic planning especially in instances where the relevant economies lack reliable data used in analysis. General
equilibrium models have been used in some literature reviews to assess the outcomes of regional integration. The approach employed in such studies laid strict emphasis on macroeconomic factors that predict income gains in the context of economies under integration agreements. However, some economists still insist that regional integration impedes growth to a reasonable extent through trade diversion (Sheng, 2014).

2.2 Empirical Review

Frankel (2017) in the study ‘Does Trade Cause Growth?’ covered 150 countries in the pen World Table. The study estimated cross-country regressions of income per person on international trade and country size using instrumental variables and compared the results with ordinary least squares (OLS) estimates from the same equation. The study established that regional trade and income are positively connected in that as trade increases the level of GDP, the income received by an individual person in that economy also increases. This happens through the accumulation of factor inputs such as human and physical capital.

Botev (2019) in the study “Economic Growth: The Role of Policies and Institutions” used cross-country time-series regressions on OECD countries for the period 1971 to 1998. The study aimed at establishing links between policy settings, institutions and economic growth in OECD countries. According to this study, the growth experienced in many developing countries in the past decades has been as a result of human capital improvements. This has also been the case in other developed nations such as Netherlands and Germany. The study established that accumulation of factors of production in an economy was a key determinant of growth. Further, the study pointed out that with increase in human and physical capital levels any economy was destined to determine a considerable amount of growth.

Maina (2017) postulated that the East Asian Regional Trade Agreement would positively impact the welfare of its member countries. The study used a CGE model to evaluate the impact of various variables on growth and realized that regionalism enhanced growth over time especially in cases where the trade agreement adopts an expansionary policy whereby members cooperate with each other. This would not be achieved in the event the countries competed with each other. Also, higher economic and welfare gains were seen to accrue to original members of all regional trade agreements. Further, additional trade benefits were seen to accrue for original members despite all gains being unevenly distributed across the regional trade arrangements.

Wooster (2007) conducted a study investigating the impacts of regional trade on economic growth among European countries. The study focused on thirteen European Union member countries and employed time-series regressions to analyze intercountry data. The study found out that liberalization of trade was an important stimulator of growth alongside population growth and Investment growth. Moreover, it concluded that trade between members of the European Union with other nonmembers posted a higher economic growth effect than trade amongst European 26 countries in all the countries that were under consideration. The study used real economic variables in the study and was successful in distinguishing growth effects arising from intra-regional trade from those of extra-regional trade. The study revealed that extra-regional trade was more beneficial to an economy than trade among members of one trade bloc. The study concluded that increased exposure to wider markets witnessed when a country traded with members outside its trade bloc gave that specific country a competitive advantage in terms of trade and this ended up translating into higher growth rates. The competitive edge came about from the tapping of new knowledge.
and skills from a variety of regions with such exchanges only possible by way of extra-regional trade. This study borrows on the approach where regional trade was split into the two identified categories in order to assess the contribution of each to economic growth.

3.0 Methodology

The study utilized a nonexperimental panel study. Panel data analysis was adopted in this study because of the sample size and the data used is cross-sectional. To test for autocorrelation, two common tests were used. That is the Baltagi and Wu’s LBI test or the Durbin Watson modified test. These tests are able to handle all sorts of panel data with minimal bias and great efficiency.

4.0 Data Analysis, Findings and Discussion

The relative sizes of extra-regional and intra-regional trade were determined by use of scaled up values of total trade using GDP in the concerned nations. All the remaining variables were obtained from the World Bank economic indicators reports.

Table 1: Summary of variables and data sources

<table>
<thead>
<tr>
<th>Variable</th>
<th>Observations</th>
<th>Mean</th>
<th>Std. Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP growth</td>
<td>70</td>
<td>3.53</td>
<td>1.17</td>
</tr>
<tr>
<td>Population growth</td>
<td>70</td>
<td>3.01</td>
<td>0.18</td>
</tr>
<tr>
<td>Investment</td>
<td>70</td>
<td>26.02</td>
<td>5.51</td>
</tr>
<tr>
<td>Intra-regional trade</td>
<td>70</td>
<td>2.03</td>
<td>0.64</td>
</tr>
<tr>
<td>Extra-regional trade</td>
<td>70</td>
<td>41.99</td>
<td>7.82</td>
</tr>
<tr>
<td>Indicator of government size</td>
<td>70</td>
<td>108.96</td>
<td>2.87</td>
</tr>
<tr>
<td>Inflation</td>
<td>70</td>
<td>10.41</td>
<td>5.66</td>
</tr>
</tbody>
</table>

The region recorded an average 26.02% GDP investment rate. There was an average 41.99 percent and 2.03 percent growth in extra-regional and intra-regional trade respectively. This clearly showed that the EAC countries (Kenya, Tanzania and Uganda) have participated more in trade with other non-EAC member states than with EAC member states. This therefore possibly suggests that EAC member states are still facing major barriers that are limiting trade amongst themselves. However, the extra-regional trade was having more variability as compared to the intra-regional trade which may indicate that such trade had been subject of major shock to the world economy. Government expenditure as a share of GDP averaged 108.96% which was relatively high. This gives credence to the notion that involvement of government in the economy may reach levels that impede growth. This is an indication that the level of both direct and indirect taxation in EAC countries is relatively high and could lead to lower output per capita. The average inflation rate across the countries was also relatively high at 10.41 percent making EAC member states susceptible to the negative effects of high inflation which might possibly explain their low rate of average GDP growth rate.
4.1 Relationship between Kenya, Uganda Tanzania Trade and the Region’s sustainability.

4.1.1 Test for Stationarity

Before asserting which model to use between a VAR and a VEC model it was important to test for stationarity as non-stationary variables would result in spurious results. Also, considering that the study used the real values of the variables and not their natural logarithms, a unit root test had to be carried out. The results from table 2 show that GDP per capita growth was stationary at level, i.e. I (0) in the case of Tanzania, Uganda and Kenya. However, the GDP per capita growth for Uganda became integrated at the first order. Extra-regional and intra-regional trade both became stationary at first difference (I(1)) across all countries. The total trade was stationary at level for the case of Tanzania and later became integrated at the first order in the case of Kenya. Johansen (1995) stated that if same order variables demand the use of the Johansen approach to co-integration to determine whether there is a co-integration relationship between them. If the results showed presence of a co-integrating relationship then a VEC model would have been used otherwise a VAR model should be used (Enders, 2004).

Table 2: Unit root tests (ADF unit root test)

<table>
<thead>
<tr>
<th>Country</th>
<th>Variable</th>
<th>Levels</th>
<th>First Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>t-bar stat</td>
<td>p-</td>
</tr>
<tr>
<td>Tanzania</td>
<td>Intra-regional trade</td>
<td>-2.4755</td>
<td>0.3315</td>
</tr>
<tr>
<td></td>
<td>Extra-regional trade</td>
<td>-0.0640</td>
<td>0.9861</td>
</tr>
<tr>
<td></td>
<td>Total trade (%GDP)</td>
<td>-4.5114**</td>
<td>0.0498</td>
</tr>
<tr>
<td></td>
<td>GDP per capital growth</td>
<td>-5.0659**</td>
<td>0.0076</td>
</tr>
<tr>
<td>Uganda</td>
<td>Intra-regional trade</td>
<td>-3.5974*</td>
<td>0.0709</td>
</tr>
<tr>
<td></td>
<td>Extra-regional trade</td>
<td>-1.1361</td>
<td>0.8802</td>
</tr>
<tr>
<td></td>
<td>Total trade (%GDP)</td>
<td>-1.4993</td>
<td>0.7752</td>
</tr>
<tr>
<td></td>
<td>GDP per capital growth</td>
<td>-3.5047*</td>
<td>0.0814</td>
</tr>
<tr>
<td>Rwanda</td>
<td>Intra-regional trade</td>
<td>-1.4098</td>
<td>0.8066</td>
</tr>
<tr>
<td></td>
<td>Extra-regional trade</td>
<td>-2.0254</td>
<td>0.5350</td>
</tr>
<tr>
<td></td>
<td>Total trade (%GDP)</td>
<td>-4.5700**</td>
<td>0.0183</td>
</tr>
<tr>
<td></td>
<td>GDP per capital growth</td>
<td>-0.0030</td>
<td>-</td>
</tr>
</tbody>
</table>

However, if the variables are differently integrated for example at I(0) and I(1)), then it would be appropriate to difference the (I(1)) variables and run a VAR model instead of running a co-integration test since there is no possibility of a co-integrating relationship in that case. Since in this case the dependent variable GDP per capita growth was stationary at level for the case of Kenya, Rwanda and Tanzania, this study applied a VAR model to test for causality between the variables of interest while a Johansen test of co-integration was carried out for the case of Uganda.
and Burundi to ascertain whether a co-integration relationship exists and thus tell us whether to apply the VAR/VEC model.

4.3 Co-integration Test

Since the variables for Uganda and Burundi were found to be stationary at first difference, a test for co-integration was carried out. The study sought to find out if there existed a co-integration relationship between the per capita GDP growth and the variables regional trade and Total trade for Uganda and Burundi. The Johansen co-integration test was used and the results represented in tables 1, 2, and 3 in the appendices. Table A1 shows the co-integration results for the variables Intra-regional trade and growth of GDP per capita. The results show that the null hypothesis of ‘no co-integration’ was not rejected for both Uganda and Burundi. The conclusion made is that there was no permanent relationship between the growth of GDP per capita and intra-regional trade and thus as was proposed by Giles and Williams (2000) we employed the VAR model to test for causality for these variables. Table A2 shows the co-integration results for extra-regional trade and the growth of GDP per capita. The results indicated a rejection of the null hypothesis of the ‘no co-integration’ in both Uganda and Burundi. Such a move concluded there was a permanent relationship between the identified variables and as such the VEC model needed to be applied in testing for causality between the two variables (Enders, 2004). Finally, Table A3 shows the co-integration results for the growth of GDP per capita and Total trade. The results demand that the null hypothesis indicating ‘no co-integration’ in the case of Uganda was not rejected but in the case of Burundi it was rejected. The results further implied that a permanent relationship between the growth of GDP per capita and total trade existed in the case of Burundi but that was not the case for Uganda. As such this study used a VEC model to investigate causality existence between the growth of GDP per capita and Total trade for Burundi’s case (Enders, 2004) while a VAR was used for the Uganda’s case.

4.4 Optimal Lag Length

Before the VAR and VEC models are estimated it is important as proposed by Tada and Yamamoto (1995) to determine the optimal lag to be used. The AIC and the SIC criteria were used to estimate the optimal lag periods for the variables: total trade, intra & extra-regional growth and the GDP per capita growth. According to Gianni and Giannini (1997), AIC and SIC are measures of trade-off fit against loss of degrees of freedom, such that the best lag length that minimizes both is obtained. The AIC and SIC optimal lag lengths results are presented in Table A4, A5 and A6 in the appendices. The results in table A4 represent the optimal lags for the variables intra-regional trade and growth of GDP per capita as selected by all the criteria. The results showed that the optimal lag for Burundi, Tanzania and Rwanda is four (4) while Kenya and Uganda had an optimal lag of three (3). Table A5 shows the optimal lags for the variables extra-regional trade and the growth of GDP per capita as assessed by different criterions. The results showed an optimal lag length of zero (0) for Burundi, three (3) for Tanzania and four (4) for Uganda, Rwanda and Kenya. Lastly Table A6 shows the optimal lag for GDP per capita growth and Total Trade. The findings indicated an optimal lag length of three (3) for Burundi, Rwanda and Tanzania and four (4) for Uganda and Kenya.
Table 4: Optimal Lang length

<table>
<thead>
<tr>
<th></th>
<th>Intra</th>
<th>Extra</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenya</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Uganda</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Tanzania</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Rwanda</td>
<td>4 (VAR)</td>
<td>4 (VEC)</td>
<td>3 (VAR)</td>
</tr>
<tr>
<td>Burundi</td>
<td>4 (VAR)</td>
<td>0 (VEC)</td>
<td>3 (VEC)</td>
</tr>
</tbody>
</table>

VAR/VEC Regression Results

The regression results for VAR model estimated for Kenya, Tanzania and Rwanda and VEC model estimated for Uganda and Burundi are presented in Tables A7 to A12 in the appendices. In this research the main uses of VAR/VEC estimates in empirical applications were to facilitate the causality tests. The causality tests are presented and discussed in the subsequent sections.

Granger Causality

In order to answer the first research question on establishing the relationship between EAC trade and the region’s economic growth a granger causality test was carried out through the VEC and VAR model and their results have been presented in subsequent tables

Table 5: Granger causality test for Kenya

<table>
<thead>
<tr>
<th>Model Applied</th>
<th>Null Hypothesis</th>
<th>Dependent variable</th>
<th>Chi-Square stat</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intra-regional trade does not promote GDP growth</td>
<td>Growth of GDP per capita</td>
<td>24.7233***</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>Growth of GDP per capita does not cause Intra-regional trade</td>
<td>Intra-regional trade</td>
<td>1.4897</td>
<td>0.4748</td>
</tr>
<tr>
<td>VAR Model</td>
<td>Extra-regional trade does not enhance the growth of GDP</td>
<td>Growth of GDP per capita</td>
<td>2.4510</td>
<td>0.2936</td>
</tr>
<tr>
<td></td>
<td>Growth of GDP per capita does not cause Extra-regional trade</td>
<td>Extra regional trade</td>
<td>29.2738***</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>Total trade does not cause growth of GDP per capita</td>
<td>Growth of GDP per capita</td>
<td>13.0139***</td>
<td>0.0015</td>
</tr>
<tr>
<td></td>
<td>Growth of GDP per capital does not promote total trade</td>
<td>Total trade</td>
<td>9.9784***</td>
<td>0.0068</td>
</tr>
</tbody>
</table>
5.0 Conclusions and Recommendations

5.1 Conclusion

From the empirical findings, this study concludes that sustainability and trade in the Kenya, Uganda and Tanzania have a relationship that varies across countries. Kenya has a significant unidirectional relationship between intra-regional trade and the growth of GDP per capita while all the other countries reveal that such a relationship does not exist. With regards to extra regional trade and growth in GDP per capita, Uganda, Tanzania and Kenya all show a positive relationship between these two variables while Burundi and Rwanda show no significant relationship. Growth of GDP per capita and total trade have a bi-directional relationship for the case of Kenya while for the rest of the member states the relationship is unidirectional.

5.2 Recommendations

Policy recommendations suggested that Kenya, Uganda and Tanzania member states heads should implement strategies that enhance cooperation and integration. This is the case because empirical results indicate intra-regional trade contributes a huge chunk with respect to economic growth in the EAC countries. However, such contribution is not sufficient on its own as extra regional trade provides an even bigger share towards achieving economic growth. Individual countries should, therefore, come up with strategies to make trade amongst them more efficient. This study recommends that EAC member states should also improve on areas such a technology and quality productions which will significantly alleviate production costs and make their goods more attractive and this would enable them compete against the other international markets and thus improve trade amongst themselves.

Funding Sources

The authors received no financial support for the research, authorship, and publication of this article.

Conflict of Interest

The authors declares no conflict of interest.

References

