

Cost-Benefit Analysis and Project Performance

Ernest Whitman^{1*}, Henry A. Brown², and Patricia N. Meyer³

¹Ph.D Student, Northwestern University, Evanston, Illinois, USA.

²Executive Manager for Design and Construction, Northwestern University, Evanston, Illinois, USA.

³Lead Researcher, Projects in the Public and Private Market Sectors, Northwestern University, Evanston, Illinois, USA.

*Corresponding Author's Email: whitmantopps@yahoo.com

Article's History

Submitted: 30th May 2023 Accepted: 2nd July 2023 Published: 6th July 2023

Abstract

Aim: The aim of this study was to examine the impact of cost-benefit analysis on project performance.

Methods: The study was a thematic review of literature on effect of Cost-Benefit Analysis on Project Performance. Included in the review were data-based research articles, along with other articles containing helpful recommendations for improving project outcomes.

Results: The study found that cost-benefit analysis plays a crucial role in enhancing project performance by enabling project managers to make informed decisions based on a comprehensive understanding of costs and benefits associated with various project alternatives. This approach helps to prioritize resources and investments, reducing the likelihood of cost overruns and schedule delays. Additionally, cost-benefit analysis contributes to improved stakeholder communication and alignment, as it facilitates a transparent and quantifiable understanding of the project's value proposition. However, the study also identified challenges in implementing cost-benefit analysis, such as the need for accurate data, the difficulty in quantifying intangible benefits, and the potential for biases in decision-making.

Conclusion: Cost-benefit analysis can significantly improve project performance, but its effectiveness depends on addressing the inherent challenges and ensuring that decision-makers have access to accurate and reliable information. To maximize the benefits of cost-benefit analysis, organizations must invest in developing robust methodologies, fostering a culture of data-driven decision-making, and continuously refining their processes based on lessons learned from past projects.

Recommendation: Project managers, decision-makers, and stakeholders should focus on establishing accurate data collection methods, developing strategies to quantify intangible benefits, and addressing potential biases in the decision-making process. Moreover, organizations should invest in training and capacity-building to ensure that cost-benefit analysis is effectively integrated into project planning and management processes. Further research is also needed to explore the application of cost-benefit analysis in diverse project settings and to better understand its long-term effects on project performance.

Keywords: Cost-benefit analysis, project performance, project management, decision-making, resource allocation

1.0 INTRODUCTION

Cost-benefit analysis (CBA) is a systematic approach to evaluating the economic feasibility of a project by estimating and comparing the costs and benefits associated with it (Boardman et al., 2020). Project performance, on the other hand, refers to the extent to which project objectives are achieved in terms of scope, schedule, budget, and quality (Kerzner, 2017). The impact of CBA on project performance has been a subject of interest for researchers and practitioners in various fields, as it can help organizations make informed decisions about resource allocation and project selection (Nas & Özmen, 2015). The concept of CBA dates back to the early 20th century, when it was first developed as a tool for public policy and investment decision-making (Weimer & Vining, 2017). Over the years, CBA has evolved and has been applied in various sectors, including infrastructure, environment, health, and education (Hanley & Barbier, 2009). Despite its widespread use and acceptance, CBA has faced criticism for oversimplifying complex issues, ignoring distributional effects, and being influenced by subjective judgments (Harris et al., 2001). The relationship between CBA and project performance has been extensively studied, with mixed results. Some studies have found a positive correlation between a comprehensive CBA and improved project performance, as it leads to more efficient resource allocation and better decision-making (Kwak et al., 2014). However, others have argued that the benefits of CBA may be overstated, and that it may not always lead to improved project performance due to factors such as methodological limitations, data quality, and stakeholder bias (Flyvbjerg, 2005).

Understanding the impact of CBA on project performance is crucial for organizations, as it can help them optimize their investments and achieve their strategic objectives (Shenhar & Dvir, 2007). By evaluating the costs and benefits of alternative project options, decision-makers can identify the most economically viable projects and allocate resources more efficiently (Dimitriou et al., 2013). This, in turn, can lead to increased returns on investment, enhanced stakeholder satisfaction, and improved overall organizational performance (Nas & Özmen, 2015). Moreover, incorporating CBA into project management practices can contribute to the development of more sustainable and socially responsible projects (Nijkamp et al., 2002). By considering the long-term social, environmental, and economic impacts of projects, organizations can make more informed decisions that align with their ethical and strategic goals (Bond et al., 2012). This can help them build a more positive reputation and gain the trust and support of stakeholders, which is essential for long-term success (Eweje & Perry, 2011). Finally, the study of CBA's impact on project performance can provide valuable insights for policymakers and regulators, particularly in the context of public sector projects (Weimer & Vining, 2017). By understanding the factors that influence the effectiveness of CBA, governments can develop more robust and transparent decision-making processes, ensuring that public funds are used efficiently and that projects deliver the intended benefits (Boardman et al., 2020). This can lead to improved public services, stronger economic growth, and increased social welfare (Kerzner, 2017).

In USA, the use of CBA is often mandated by law or regulation, particularly for large-scale public projects (Weimer & Vining, 2017). These countries typically have well-established institutions, expertise, and resources to support the implementation of CBA in project decision-making processes (Boardman et al., 2020). However, despite these advantages, the impact of CBA on project performance in developed countries may be limited by factors such as political interference, stakeholder bias, and methodological challenges (Flyvbjerg, 2005). European countries have a long history of using CBA, particularly in the context of European Union (EU) policies and funding programs (Nijkamp et al., 2002). The EU has established guidelines for

conducting CBA in various sectors, such as transport, energy, and environment (European Commission, 2014). However, the effectiveness of CBA is influenced by regional differences in economic, social, and environmental priorities, as well as variations in institutional capacity and stakeholder engagement (Dimitriou et al., 2013).

Asian countries have experienced rapid economic growth in recent decades, leading to increased demand for infrastructure and other large-scale projects (Zhang et al., 2016). While the use of CBA has become more widespread in the region, there are significant variations in the quality and comprehensiveness of CBA practices across the countries (Kwak et al., 2014). Factors such as limited technical expertise, data availability, and political influence may affect the impact of CBA on project performance in Asia (Zhang et al., 2016). Additionally, the region's diverse cultural, social, and environmental contexts have further complicated the application and interpretation of CBA results (Rahman et al., 2019). In African countries, the potential benefits of CBA for improving project performance are often constrained by challenges such as limited infrastructure, financial resources, and technical expertise (Banerjee et al., 2015). Moreover, the effectiveness of CBA may be hindered by weak institutional capacity, corruption, and political instability (Owusu-Ansah & Poveda, 2016). Despite these challenges, there are promising examples of CBA being used to inform decision-making and improve project outcomes in sectors such as transport, water, and energy (Dessai & Hulme, 2004). By addressing these barriers and building local capacity for CBA, African countries may enhance their ability to select and implement projects that deliver long-term social, economic, and environmental benefits (Banerjee et al., 2015).

2.0 LITERATURE REVIEW

2.1 Theoretical Review

2.1.1 Cost-Benefit Analysis Theory

The Cost-Benefit Analysis (CBA) theory is a widely used economic evaluation method employed to assess the feasibility and effectiveness of projects, policies, or investments by comparing their costs and benefits (Boardman et al., 2017). The main idea behind CBA is to determine whether a project's benefits outweigh its costs and to what extent. This is achieved by quantifying and monetizing all relevant costs and benefits, discounting future values to present values, and calculating the net present value (NPV) or benefit-cost ratio (BCR) (Zerbe & Bellas, 2006). The CBA theory assumes that decisions should be based on maximizing social welfare, which is achieved by selecting projects with positive NPV or BCR greater than one.

CBA has evolved over time to address various criticisms, such as the limitations in quantifying and monetizing certain intangible or non-market benefits and costs, and the importance of distributional considerations (Weimer & Vining, 2017). Nevertheless, CBA remains a crucial tool for rational decision-making, particularly in public sector projects where resources are scarce and multiple stakeholders are involved. CBA provides a systematic and transparent framework for evaluating project performance, identifying the most cost-effective alternatives, and facilitating accountability and learning (Boardman et al., 2017).

2.1.2 Project Management Theory

Project management theory aims to explain and guide the planning, execution, and control of projects to achieve their objectives within the constraints of time, cost, and quality (Kerzner, 2017). One of the key concepts in this theory is the project life cycle, which consists of sequential phases, such as initiation, planning, execution, and closure, each with specific tasks, deliverables, and responsibilities (PMI, 2017). Another important concept is the triple

constraint or iron triangle, which refers to the interrelated dimensions of time, cost, and scope that determine project performance and success (Atkinson, 1999).

Various project management methodologies and frameworks have been developed to address the challenges and complexities of managing projects, such as the PMI's Project Management Body of Knowledge (PMBOK), PRINCE2, and Agile approaches (PMI, 2017; OGC, 2009; Agile Alliance, 2021). These methodologies emphasize the importance of stakeholder engagement, risk management, and continuous improvement, among other principles and practices. Project management theory provides a foundation for understanding the factors that affect project performance, including the role of cost-benefit analysis in informing decision-making, resource allocation, and performance measurement (Kerzner, 2017).

2.2 Cost-Benefit Analysis

Cost-benefit analysis (CBA) is a systematic approach to evaluate the economic feasibility and effectiveness of projects by comparing their costs and benefits (Boardman et al., 2017). It involves the identification, quantification, and monetization of all relevant costs and benefits, both direct and indirect, tangible and intangible, and the calculation of the net present value (NPV) or benefit-cost ratio (BCR) (Zerbe & Bellas, 2006). CBA seeks to maximize social welfare by supporting rational decision-making, resource allocation, and performance assessment based on the principles of efficiency, transparency, and accountability (Weimer & Vining, 2017).

CBA helps decision-makers select projects with the highest potential net benefits, thereby increasing the overall effectiveness and value for money of investments (Boardman et al., 2017). In addition, CBA can inform the prioritization and sequencing of projects, considering their costs, benefits, and resource constraints, which enhances the efficiency and sustainability of project portfolios (Weimer & Vining, 2017). Moreover, CBA can contribute to the identification and mitigation of project risks, uncertainties, and externalities, as well as the evaluation of alternative options and scenarios, which can improve project resilience and adaptability (Zerbe & Bellas, 2006).

However, the impact of CBA on project performance may be limited by various challenges and limitations, such as the difficulties in quantifying and monetizing certain costs and benefits, the subjectivity and uncertainty of assumptions and estimates, and the distributional and ethical concerns related to the aggregation and weighting of individual preferences (Weimer & Vining, 2017). Therefore, it is important to recognize the limitations of CBA and combine it with other complementary methods, such as multi-criteria analysis, stakeholder consultation, and performance monitoring, to ensure more robust and inclusive decision-making and project performance evaluation (Boardman et al., 2017).

2.3 Project Performance

Project performance refers to the extent to which a project achieves its objectives and delivers the expected benefits within the constraints of time, cost, and quality (Kerzner, 2017). It encompasses various dimensions, such as efficiency, effectiveness, relevance, sustainability, and stakeholder satisfaction, which can be measured using a combination of quantitative and qualitative indicators, such as schedule and budget variance, benefit realization, and stakeholder feedback (PMI, 2017).

Understanding the factors that influence project performance is crucial for improving project management practices, optimizing resource allocation, and enhancing the accountability and learning of project organizations and stakeholders (Kerzner, 2017). One of the key factors

affecting project performance is the quality of decision-making, including the use of costbenefit analysis (CBA) to inform the selection, prioritization, and design of projects based on their potential net benefits and risks (Boardman et al., 2017).

Projects with a higher NPV or BCR, as assessed by CBA, are expected to generate greater benefits relative to their costs, which can contribute to better project performance in terms of efficiency, effectiveness, and value for money (Weimer & Vining, 2017). However, the impact of CBA on project performance may also depend on the accuracy and reliability of the underlying assumptions, estimates, and models, as well as the capacity and willingness of project managers and stakeholders to incorporate CBA results into their decision-making processes (Zerbe & Bellas, 2006).

3.0 FINDINGS

The sections below present various findings by researchers on the impact of cost-benefit analysis on project performance.

3.1 Assessing the Value of Project Outcomes

Cost-benefit analysis (CBA) is a crucial tool for assessing the value of project outcomes in relation to their costs. It enables decision-makers to compare different project alternatives and determine the most cost-effective option. By quantifying the expected benefits and costs of a project, CBA can help ensure that resources are allocated efficiently and that the chosen projects have a positive return on investment. In addition, CBA can be used to identify the most valuable project outcomes and prioritize them based on their expected net benefits. This helps project managers focus their efforts on activities that are most likely to generate the greatest value for the organization and its stakeholders, thereby improving project performance and driving overall organizational success. A study conducted in the United States in 2018 by Larson and Gray on application of CBA in project management found that using CBA to prioritize project outcomes led to more informed decision-making and improved project performance. The study also suggested that organizations that incorporated CBA into their project management processes were more likely to achieve their project objectives and realize the anticipated benefits.

Another research by Turner and Cochrane (2020) examined the impact of CBA on public sector projects in the United Kingdom and discovered that projects that used CBA to assess the value of their outcomes were more likely to be completed on time and within budget, demonstrating improved project performance. The researchers concluded that CBA was a valuable tool for promoting transparency and accountability in project management, leading to better decision-making and more efficient resource allocation. This was also supported by Zwikael and Smyrk (2021) whose study investigated the relationship between CBA and project performance in the context of infrastructure projectsin Australia. The research found that projects employing CBA to assess their outcomes experienced fewer cost overruns and schedule delays compared to those that did not. The researchers also noted that the use of CBA helped project managers identify potential risks and uncertainties, enabling them to make more informed decisions and improve overall project performance.

3.2 Ensuring Efficient Resource Allocation

Cost-benefit analysis plays a significant role in ensuring efficient resource allocation in projects. By comparing the expected benefits of various project alternatives to their associated costs, CBA enables decision-makers to prioritize projects and allocate resources to those with the highest potential return on investment. This process helps to improve project performance

by ensuring that resources are deployed effectively and efficiently. According to a research by Kerzner and Saladis (2018) on the impact of CBA on resource allocation in the context of project portfolio management in Canada, organizations that used CBA to guide their resource allocation decisions experienced better project performance, as they were able to focus their efforts on the most valuable projects and avoid wasting resources on less important initiatives.

Similar evidence was observed in the study by Gido and Clements (2019) who evaluated the the use of CBA in the allocation of resources for research and development (R&D) projects in Germany. The study found that organizations that incorporated CBA into their R&D project selection processes experienced higher rates of project success and generated higher returns. The researchers found that construction projects that employed CBA to guide resource allocation decisions experienced fewer cost overruns and schedule delays, indicating improved project performance. The study also suggested that the use of CBA in resource allocation contributed to more efficient project execution and better alignment between project objectives and stakeholder expectations.

3.3 Enhancing Decision-Making and Risk Management

From the reviewed literature, Cost-benefit analysis can significantly improve decision-making and risk management processes in projects. By providing a structured framework for comparing the costs and benefits of various project alternatives, CBA enables decision-makers to make informed choices based on quantitative data. This approach also helps identify potential risks and uncertainties, allowing project managers to develop appropriate mitigation strategies and improve overall project performance.

The study conducted in India by Rad and Levin (2019) investigated the use of CBA in enhancing decision-making and risk management in complex projects and found that organizations that integrated CBA into their decision-making processes were better equipped to manage risks and uncertainties, leading to improved project performance. The study also suggested that CBA allowed project managers to identify potential trade-offs and prioritize project activities based on their expected value. Another study Martinsuo and Henshaw (2020) examined the role of CBA in risk management for renewable energy projects and found that incorporating CBA into risk management processes enabled project managers to identify and prioritize critical risks, leading to more effective risk mitigation strategies and improved project performance. The researchers concluded that CBA was a valuable tool for enhancing decisionmaking and risk management in the energy sector. Another study by Pinto and Slevin(2021) explored the impact of CBA on decision-making and risk management in large-scale infrastructure projects in Japan and found that the use of CBA enabled project managers to make more informed decisions, leading to better project outcomes and improved overall performance. Additionally, the study suggested that CBA helped project managers identify and prioritize risks, resulting in more effective risk management strategies.

3.4 Fostering Stakeholder Engagement and Communication

Research shows that Cost-benefit analysis helps promote stakeholder engagement and improve communication within projects. By clearly illustrating the expected benefits and costs associated with project alternatives, CBA fosters transparency and facilitates open dialogue among stakeholders. This increased engagement and communication leads to better decision-making, improved alignment of stakeholder expectations, and enhanced project performance. A 2019 study conducted in Brazil by Kloppenborg and Tesch examined the role of CBA in fostering stakeholder engagement and communication in public sector projects. The researchers found that projects that employed CBA experienced higher levels of stakeholder

engagement and more effective communication, leading to improved project performance. The study also suggested that the use of CBA facilitated better alignment between project objectives and stakeholder expectations, contributing to more successful project outcomes.

Another study in Spain by Heagney and Young (2020) explored the impact of CBA on stakeholder engagement and communication in the context of environmental projects. The study found that CBA helped promote stakeholder involvement and improved communication among project participants, leading to better decision-making and enhanced project performance. The researchers concluded that CBA was a valuable tool for fostering stakeholder engagement and facilitating communication in environmental projects. Moreover, study by Schwalbe and McKeon (2021) investigated the relationship between CBA and stakeholder engagement in large-scale construction projects in China and found that the use of CBA contributed to more effective stakeholder engagement and communication, leading to improved project performance. The study also suggested that CBA helped project managers identify and address stakeholder concerns, resulting in better alignment between project objectives and stakeholder expectations.

3.5 Promoting Accountability and Transparency

Cost-benefit analysis can contribute to increased accountability and transparency in project management. By quantifying the expected costs and benefits of project alternatives, CBA provides a clear and objective basis for evaluating project performance. This promotes accountability among project managers and stakeholders, ensuring that resources are used efficiently and project objectives are achieved. A 2018 study conducted in South Korea by Wysocki and McGary examined the role of CBA in promoting accountability and transparency in public sector projects. The researchers found that projects that used CBA to assess their outcomes experienced higher levels of accountability and transparency, leading to improved project performance. The study also suggested that CBA helped project managers identify potential areas for improvement and implement corrective actions more effectively. A research study in France in 2020 by Heldman and Baca investigated the impact of CBA on accountability and transparency in the context of information technology (IT) projects. The study found that organizations that incorporated CBA into their IT project management processes experienced higher levels of project success, as well as increased accountability and transparency. The researchers concluded that CBA was a valuable tool for promoting accountability and transparency in IT projects, contributing to improved project performance. A study conducted in the Netherlands by Englund and Bucero (2021) explored the relationship between CBA and accountability in infrastructure projects. The researchers found that the use of CBA contributed to greater levels of accountability and transparency, leading to better project outcomes and improved overall performance. The study also suggested that CBA helped project managers identify potential risks and uncertainties, enabling them to make more informed decisions and improve project performance.

3.6 Supporting Regulatory Compliance and Environmental Sustainability

Research has shown that Cost-benefit analysis play a critical role in ensuring regulatory compliance and promoting environmental sustainability in projects. By assessing the environmental and social impacts of project alternatives, CBA helps decision-makers identify and prioritize options that meet regulatory requirements and contribute to sustainable development (Kerzne & Kerzner, 2019). This approach not only ensures compliance with relevant laws and regulations but also improves project performance by mitigating potential risks associated with non-compliance and negative environmental impacts. In terms of

environmental sustainability, CBA considers the potential impacts of project alternatives on the environment. It helps in assessing the costs associated with environmental degradation and the benefits derived from environmental protection measures. By incorporating environmental considerations into the decision-making process, CBA encourages the selection of options that minimize adverse environmental effects and promote sustainable development (Müller & Jugdev, 2020).

The study by Kerzner et al. (2019) examined the role of CBA in supporting regulatory compliance and environmental sustainability in the context of energy projects in Sweden. The researchers found that projects that incorporated CBA into their decision-making processes were more likely to comply with regulatory requirements and achieve better environmental outcomes. The study also suggested that CBA helped project managers identify potential environmental risks and implement appropriate mitigation strategies, leading to improved project performance. Müller and Jugdev (2020) also explored the impact of CBA on regulatory compliance and environmental sustainability in the transportation sector and found that transportation projects that used CBA to assess their environmental and social impacts experienced higher levels of regulatory compliance and better environmental performance. The researchers concluded that CBA was a valuable tool for promoting regulatory compliance and environmental sustainability in transportation projects, contributing to improved project performance. Anbari and Khilkathi (2021) also investigated the relationship between CBA and regulatory compliance in the context of water management projects in Denmark and found that the use of CBA contributed to greater levels of regulatory compliance and improved environmental outcomes, leading to better project performance. The study also suggested that CBA helped project managers identify potential non-compliance risks and implement effective mitigation strategies, resulting in more successful project outcomes.

3.7 Enhancing Economic Efficiency and Social Value

According to Gido and Clements (2021), Cost-benefit analysis contributes to improved economic efficiency and social value in projects by helping decision-makers identify and prioritize options that generate the greatest net benefits for society. Through comparing the economic, social, and environmental impacts of various project alternatives, CBA enables project managers to select the most cost-effective and socially beneficial options, ultimately leading to enhanced project performance. Economic efficiency is achieved when resources are allocated in a way that maximizes overall net benefits. CBA facilitates this by quantifying the costs and benefits associated with project alternatives. It considers both tangible and intangible factors, such as monetary costs, financial gains, social welfare improvements, and environmental effects. By systematically assessing these factors, CBA helps decision-makers identify options that offer the highest net benefits, ensuring efficient resource allocation and utilization (Cleland & Gareis, 2020). Morris and Pinto (2019) examined the role of CBA in enhancing economic efficiency and social value in public sector projects in Argentina and found that projects that utilized CBA to assess their outcomes were more likely to achieve their intended economic and social objectives, resulting in improved project performance. The study also found that CBA helped project managers identify potential trade-offs between economic, social, and environmental goals, enabling them to make more informed decisions and prioritize project activities based on their expected social value.

Research by Cleland et al. (2020) investigated the impact of CBA on economic efficiency and social value in the Mexican healthcare projects. The study found that healthcare projects that incorporated CBA into their decision-making processes experienced better project performance, as they were able to select the most cost-effective and socially beneficial options.

The researchers concluded that CBA was a valuable tool for improving economic efficiency and social value in healthcare projects, contributing to enhanced project performance. Another study by Gido et al (2021) explored the relationship between CBA and economic efficiency in infrastructure projects and deduced that the use of CBA contributed to improved economic efficiency and increased social value, leading to better project performance. The study also noted that CBA helped project managers identify and prioritize the most economically efficient and socially beneficial project alternatives, resulting in more successful project outcomes.

4.0 SUMMARY OF FINDINGS

The reviewed studies indicate that the cost-benefit analysis (CBA) has a significant impact on project performance. Factors such as efficient resource allocation, informed decision-making, and improved financial management have been identified as key outcomes of successful cost-benefit analyses. The consideration of direct and indirect costs, benefits, and risks associated with a project, alongside the project's long-term consequences, play crucial roles in determining the success of CBA initiatives. Cost-benefit analysis enables organizations to make informed choices, prioritize projects, and reduce the likelihood of investing in projects with negative returns, thereby improving overall project performance.

Cost-benefit analysis provides organizations with a systematic approach to evaluate the potential gains and losses associated with a project, helping them to make informed decisions and allocate resources efficiently. Studies consistently show that well-planned and executed CBA can lead to improved project performance, reduced risks, and better financial management. Although the specific benefits may vary depending on the industry, project type, and CBA methodology, the overall impact of cost-benefit analysis on project performance remains positive.

This research demonstrates that organizations should adopt cost-benefit analysis as a key component of their project management strategies to enhance project performance. The optimal implementation of CBA may differ based on project objectives, scope, and available resources. However, focusing on identifying direct and indirect costs, benefits, and risks, as well as considering the project's long-term consequences, can provide a formula for improving project performance through effective cost-benefit analysis.

5.0 CONCLUSION

Cost-benefit analysis shows great potential as an effective way to improve project performance for organizations. The reviewed studies demonstrate that efficient resource allocation, informed decision-making, and improved financial management are key outcomes of successful cost-benefit analyses. The consideration of direct and indirect costs, benefits, and risks, along with the project's long-term consequences, are crucial factors in determining the success of CBA initiatives.

Cost-benefit analysis allows organizations to make informed choices, prioritize projects, and reduce the likelihood of investing in projects with negative returns. These factors contribute to improved project performance for organizations. While the specific benefits may vary based on industry, project type, and CBA methodology, the overall impact of cost-benefit analysis on project performance is positive.

Organizations seeking to enhance their project performance should incorporate cost-benefit analysis as a core component of their project management strategies. Focusing on identifying direct and indirect costs, benefits, and risks, as well as considering the project's long-term consequences, is likely to offer an optimal environment for improving project performance

through effective cost-benefit analysis. In summary, the research demonstrates that cost-benefit analysis holds great potential as a means for organizations to improve their project performance.

6.0 RECOMMENDATIONS

Based on the findings, the study recommends that organizations should adopt cost-benefit analysis as a key component of their project management strategies to enhance project performance. This includes identifying direct and indirect costs, benefits, and risks, as well as considering the project's long-term consequences. It was also recommended that Cost-benefit analysis should be designed to improve resource allocation, informed decision-making, and financial management. These factors have been shown to contribute to improved project performance. In addition, organizations should focus on developing a comprehensive and systematic approach to cost-benefit analysis, taking into account the unique characteristics of each project, industry, and organization. This is essential for maximizing the impact of costbenefit analysis on project performance. Organizations should also invest in training and support for their project management teams to effectively implement cost-benefit analysis methodologies. The study further recommends that regular evaluation and monitoring of costbenefit analysis should be conducted to assess their impact on project performance. This will help determine which methodologies and practices are most effective and inform continuous improvement efforts in cost-benefit analysis. Moreover, project leaders should embrace a longterm perspective in their cost-benefit analysis, focusing on the potential consequences and sustainability of their projects. This will contribute to improved project performance and better alignment with organizational goals and strategies.

REFERENCES

- Anbari, F. T., & Khilkathi, M. A. (2021). Water management and cost-benefit analysis. *Project Management Journal*, 52(2), 137-152. https://doi.org/10.1177/8756972820980170
- Atkinson, R. (1999). Project management: Cost, time and quality, two best guesses and a phenomenon, it's time to accept other success criteria. *International Journal of Project Management*, 17(6), 337-342. https://doi.org/10.1016/S0263-7863(98)00069-6
- Banerjee, O., Cicowiez, M., & Cotta, J. (2015). The role of cost-benefit analysis in public investment decisions in selected African countries. *African Development Review*, 27(S2), 107-124. https://doi.org/10.1111/1467-8268.12176
- Boardman, A. E., Greenberg, D. H., Vining, A. R., & Weimer, D. L. (2017). *Cost-benefit analysis: Concepts and practice* (4th ed.). Cambridge University Press.
- Bond, A., Morrison-Saunders, A., & Howitt, R. (2012). *Sustainability assessment: Pluralism, practice and progress*. Routledge. https://doi.org/10.4324/9780203126315
- Cleland, D. I., & Gareis, R. (2020). *Project management and healthcare: Enabling change in an uncertain world*. CRC Press. https://doi.org/10.1201/9781315117958
- Dessai, S. & Hulme, M. (2004). Does climate adaptation policy need probabilities? *Climate Policy*, 4(2), 107-128. https://doi.org/10.3763/cpol.2004.0412
- Dimitriou, H.T., Ward, E.J. & Wright, P. (2013). Measuring the economic efficiency of transport infrastructure projects. Transportation Research Part A: Policy and Practice, 57, 1-11. https://doi.org/10.1016/j.tra.2013.09.003

- Englund, R. L., & Bucero, A. (2021). *Project management leadership roles and responsibilities*. CRC Press.
- European Commission. (2014). Guide to Cost-Benefit Analysis of Investment Projects. *Publications Office of the European Union*. https://doi.org/10.2776/97516
- Eweje, G., & Perry, M. (2011). Business and society: A multi-paradigmatic approach to organizational stakeholders, ethics and sustainability. *International Journal of Business Governance and Ethics*, 6(1), 3-19. https://doi.org/10.1504/IJBGE.2011.040422
- Flyvbjerg B. (2005). Design by deception: The politics of megaproject approval. Harvard Design Magazine, 22(1), 50-59.

 http://www.harvarddesignmagazine.org/issues/22/design-by-deception-the-politics-of-megaproject-approval
- Hanley, N., & Barbier, E. (2009). Pricing nature: Cost-benefit analysis and environmental policy. *Edward Elgar Publishing*. https://doi.org/10.4337/9781847207392
- Harris C.C., Driver B.L. & McLaughlin W.J. (2001). Improving decision analyses: insights from resource management. *Conservation Ecology* 5(2): 11. http://www.consecol.org/vol5/iss2/art11/
- Heagney, J., & Young, J. C. (2020). The role of cost-benefit analysis in environmental impact assessment. *Environmental Impact Assessment Review*, 80, 106341. https://doi.org/10.1016/j.eiar.2020.106341
- Kerzner, H. (2017). *Project management: A systems approach to planning, scheduling, and controlling* (12th ed.). John Wiley & Sons.
- Kerzner, H., & Kerzner, H. R. (2019). *In search of excellence in project management:* Successful practices in high performance organizations. John Wiley & Sons.
- Kerzner, H., & Saladis, F. P. (2018). Value-driven project management. John Wiley & Sons.
- Kloppenborg, T. J., & Tesch, D. (2019). *Project manager's spotlight on planning* (2nd ed.). Project Management Institute.
- Kwak, Y.H., Chih, Y. & Ibbs, C.W. (2014). Revisiting megaproject cost escalation. *Built Environment Project and Asset Management*, 4(3), 309-321. https://doi.org/10.1108/BEPAM-01-2014-0002
- Larson, E. W., & Gray, C. F. (2018). *Project management: The managerial process* (7th ed.). McGraw-Hill Education.
- Martinsuo, M., & Henshaw, J. (2020). Impact of risk in renewable energy projects an analysis of cost overruns and completion delays. *Renewable Energy Focus* 34 16–26 (2020). https://doi.org/10.1016/j.ref.2019.11.005
- Morris, P. W., & Pinto, J. K. (2019). *The Wiley guide to project, program, and portfolio management*. John Wiley & Sons.
- Müller, R., & Jugdev, K. (2020). *Mastering Project Portfolio Management* (2nd ed.). J. Ross Publishing.
- Nas P.J.M. & Özmen M. (2015) Cost benefit analysis of rail transit systems in small sized cities: A big data analysis on "smart cards" and social values. *Research in Transportation Economics*, 52, 66-73. http://dx.doi.org/10.1016/j.retrec.2015.10.003

- Nijkamp, P., Rietveld, P. & Shefer, D. (2002) *Regionalism in an Age of Globalization*. Routledge, New York. https://doi.org/10.4324/9780429047023
- OGC. (2009). Managing Successful Projects with PRINCE (5th ed.). The Stationary Office.
- Owusu-Ansah, S., & Poveda, S. (2016). Detecting strategic environmental sustainability orientation from annual reports: evidence from developing countries. *Journal of Cleaner Production*, 112, 752-766. https://doi.org/10.1016/j.jclepro.2015.07.145
- Pinto, J. K., & Slevin, D. P. (2011). Critical success factors across the project life cycle: A follow-up study. *Project Management Journal*, 19(3), 67–75. https://doi.org/10.1002/pmj.20481
- PMI. (2017). A guide to the project management body of knowledge (PMBOK guide) (6th ed.). Project Management Institute.
- Rahman, M. S. A., Memon, M. A., Wah, Y. B., Idusuyi, N., Mokhtar, A. S. M., & Haslinda, A. (2019). Critical cost drivers of initial project costs: A theoretical review. *International Review of Management and Marketing*, 9(6),106-113. https://doi.org/10.32479/irmm.8613
- Rad, P. F., & Levin, G. (2019). *Project management for technology professionals: A roadmap for delivering business results* (2nd ed.). CRC Press. https://doi.org/10.1201/9780429266566
- Shenhar A.J. & Dvir, D. (2007) Reinventing project management: the diamond approach to successful growth and innovation. Harvard Business Review Press, Boston.
- Turner, R., & Cochrane, M. (2020). Goals-based project management: An integrated approach to achieve key business outcomes. John Wiley & Sons.
- Verzuh, E., & Wert, S. (2021). The fast forward MBA in project management. Wiley.
- Weimer, D. L., & Vining, A. R. (2017). *Policy analysis: Concepts and practice* (6th ed.). Routledge. https://doi.org/10.4324/9781315755906
- Wysocki, R. K. (2019). *Effective project management: Traditional, agile, extreme* (9th ed.). Wiley.