Application of Stable Isotopes to Investigate Hydrological Processes in Rivers in the Tropical Zones, South-Center, Cameroon

Authors

  • Ayuk Valery Takang Department of Geology, Faculty of Science, University of Buea, Cameroon.
  • Wotany Engome Regina Department of Geology, Faculty of Science, University of Buea, Cameroon.
  • Wirmverm Mengnjo Jude Institute of Geological and Mining Research, Yaounde, Cameroon.
  • Agyinyi Christopher Department of Geology, Faculty of Science, University of Buea, Cameroon.
  • Ngai Jude Institute of Geological and Mining Research, Yaounde, Cameroon.
  • Kimbi Bertrand Department of Geology, Faculty of Science, University of Buea, Cameroon.
  • Muka Boris Department of Geology, Faculty of Science, University of Buea, Cameroon.
  • Mbu God-promise Department of Geology, Faculty of Science, University of Buea, Cameroon.

DOI:

https://doi.org/10.58425/gjpas.378

Keywords:

Stable isotopes (¹⁸O, ²H), seasonal hydrology, river recharge, isotope ratio mass spectrometry, Central Cameroon

Abstract

Aim: Surface water remains the primary source of drinking and agricultural supply in the tropical rainforests of South-Centre Cameroon, yet seasonal hydrological processes that govern its availability remain limited. The study examines river recharge mechanisms and water residence time.

Methods: The study used stable isotopes, oxygen-18 (δ¹⁸O) and deuterium (δ²H), from 56 river systems sampled in February 2024, the dry season and July 2024, the wet season. Sampling was done along a latitudinal transect from Yaoundé to Manjo and Manjo to the Littoral, covering diverse elevations and hydrological settings. Isotope Ratio Mass Spectrometry (IRMS) was used to measure δ¹⁸O and δ²H, alongside hydrochemical indicators such as total dissolved solids (TDS), chloride, and deuterium excess (d-excess).

Results: The study found a strong seasonal contrast: wet season δ¹⁸O and δ²H values ranged from -5.22‰ to -2.77‰ and -25.74‰ to -8.68‰, respectively, suggesting direct rainfall recharge. In the dry season, δ¹⁸O values ranged from -4.16‰ to -0.04‰ and δ²H from -20.82‰ to 0.19‰, with elevated TDS (up to 10,020 mg/L) and lower d-excess, indicating increased evaporation and groundwater input. LMWL-GMWL comparisons confirmed rapid recharge during the wet season and stronger evaporative enrichment in the dry season.

Conclusion: These findings point to shorter residence times in the wet season and longer retention during dry periods, highlighting climate sensitivity in river recharge.

Recommendations: These findings support the need for integrated surface water management, emphasizing protection of recharge areas and implementation of long-term isotopic monitoring. The study offers valuable baseline data for safeguarding surface waters and informs strategies for other vulnerable sources in other regions.

References

Abiye, T. A., Sulieman, H., & Ayalew, M. (2011). Geochemical and isotope analyses were used to characterize groundwater flow in the Awash River basin in Ethiopia. Environmental Earth Sciences, 62(3), 615-624.

Bonazza, M. (2021). Water vapor, precipitation and evapotranspiration isotopic composition in the tropical atmospheric boundary layer (Doctoral dissertation, Dissertation, Göttingen, Georg-August Universität, 2021).

Bouchez, J., et al. (2012). "Sources of water in the Congo River: Insights from stable isotope data." Journal of Hydrology, 444-445, 165-175.

Cartwright, I., et al. (2012). "Groundwater-surface water interactions in a semi-arid environment: Insights from isotopic and geochemical data." Applied Geochemistry, 27(2), 422-434.

Chen, F., Wang, S., Wu, X., Zhang, M., Argiriou, A. A., Zhou, X., & Chen, J. (2021). Local meteoric water lines in a semi-arid setting of northwest China using multiple methods. Water, 13(17), 2380.

Clark, I. D., & Fritz, P. (1997). Environmental Isotopes in Hydrology. Lewis Publishers.

Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133(3465), 1702-1703.

Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16(4), 436-468.

Descroix, L., et al. (2009). "Hydrological behaviour of West African catchments." Hydrological Sciences Journal, 54(4), 663-677.

Douville, H., Raghavan, K., Renwick, J., Allan, R. P., Arias, P. A., Barlow, M., ... & Zolina, O. (2021). Water cycle changes.

Douville, H., Raghavan, K., Renwick, J., Allan, R. P., Arias, P. A., Barlow, M., ... & Zolina, O. (2021). Water cycle changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1055–1210). Cambridge University Press. https://doi.org/10.1017/9781009157896.011

Dulinski, M., Rozanski, K., Pierchala, A., & Gorczyca, Z. (2024). Isotope effects accompanying δ 2H, δ 18O and δ 17O analyses of aqueous saline solutions using cavity ring‐down laser spectroscopy. Rapid Communications in Mass Spectrometry, 38(4), e9680.

Edirisinghe, E. A. N. V., Pathirana, A., De Silva, R. P., & Hettiarachchi, S. S. (2018). Use of stable isotopes to identify recharge sources and seasonal variation in groundwater in Sri Lanka. Journal of Hydrology: Regional Studies, 17, 124–139. https://doi.org/10.1016/j.ejrh.2018.05.002

Ehtasham, L., Sherani, S. H., & Nawaz, F. (2024). Acceleration of the hydrological cycle and its impact on water availability over land: an adverse effect of climate change. Meteorology Hydrology and Water Management. Research and Operational Applications, 12.

Elsenbeer, H., Storck, F., and Weiler, M.: Scale effects in solute travel time distributions control stream solute concentrations and DOC quantity in an Amazonian catchment, Hydrol. Earth Syst. Sci., 24, 1815–1833, https://doi.org/10.5194/hess-24-1815-2020, 2020.

Fantong, W. Y., Ketchemen-Tandia, B., & Nkeng, G. E. (2023). Isotopic characterization of groundwater-surface water interactions in tropical river basins: Implications for sustainable water resource management in Cameroon. Journal of Hydrology, 620, 129456. https://doi.org/10.1016/j.jhydrol.2023.129456.

Fantong, W. Y., Ketchemen-Tandia, B., & Nkeng, G. E. (2023). Isotopic characterization of groundwater-surface water interactions in tropical river basins: Implications for sustainable water resource management in Cameroon. Journal of Hydrology, 620, 129456.

Gat, J. R. (1996). Oxygen and hydrogen isotopes in the hydrologic cycle. IAEA.

Gébelin, A., Rojas, D., & Crespo, P. (2021). Isotopic composition of surface water and groundwater across an altitudinal gradient in the southern Ecuadorian Andes. Hydrological Processes, 35(6), e14204. https://doi.org/10.1002/hyp.14204

Gibson, J. J., et al. (2016). Evaporation and isotope dynamics in lakes: A review. Aquatic Sciences, 78, 1-25.

Gonfiantini, R. (1986). Environmental isotopes in lake studies. In Handbook of Environmental Isotope Geochemistry (pp. 113-168). Elsevier.

Goni, I. B., et al. (2001). "Isotopic characterization of surface waters in the Sahel region." Journal of Hydrology, 246(1-4), 44-56.

Goni, I. B., Taylor, R. G., Favreau, G., Shamsudduha, M., Nazoumou, Y., & Ngounou Ngatcha, B. (2021). Groundwater recharge from heavy rainfall in the southwestern Lake Chad Basin: evidence from isotopic observations. Hydrological Sciences Journal, 66(8), 1359-1371.

Guan, Y., Gu, X., Slater, L. J., Li, X., Li, J., Wang, L., ... & Zhang, X. (2024). Human-induced intensification of terrestrial water cycle in dry regions of the globe. npj Climate and Atmospheric Science, 7(1), 45.

Guenet, B., Gabrielle, B., Chenu, C., Arrouays, D., Balesdent, J., Bernoux, M., ... & Zhou, F. (2021). Can N2O emissions offset the benefits from soil organic carbon storage?. Global Change Biology, 27(2), 237-256.

Hollins, S. E., Hughes, C. E., Crawford, J., Cendón, D. I., & Meredith, K. T. (2018). Rainfall isotope variations over the Australian continent–Implications for hydrology and isoscape applications. Science of the Total Environment, 645, 630-645.

IAEA. (2006). The Use of Stable Isotopes in Hydrology. IAEA.

Jiang, D., Li, Z., Luo, Y., & Xia, Y. (2021). River damming and drought affect water cycle dynamics in an ephemeral river based on stable isotopes: The Dagu River of North China. Science of the Total Environment, 758, 143682.

Kendall, C., & McDonnell, J. J. (Eds.). (1998). Isotope tracers in catchment hydrology. Elsevier.

Ketchemen-Tandia, B., Ngo Boum-Nkot, S., & Takounjou, A. F. (2022). Groundwater contributions to streamflow in tropical watersheds: Insights from stable isotope analysis in the Lokoundjé River Basin, Cameroon. Hydrological Processes, 36(4), e14567. https://doi.org/10.1002/hyp.14567

Ketchemen-Tandia, B., Ngo Boum-Nkot, S., & Takounjou, A. F. (2022). Groundwater contributions to streamflow in tropical watersheds: Insights from stable isotope analysis in the Lokoundjé River Basin, Cameroon. Hydrological Processes, 36(4), e14567.

Kirchner, J. W. (2003). A double paradox in catchment hydrology and geochemistry. Hydrological Processes, 17(4), 871-874.

Laonamsai, J., Ichiyanagi, K., Patsinghasanee, S., Kamdee, K., & Tomun, N. (2022). Application of stable isotopic compositions of rainfall runoff for evaporation estimation in Thailand Mekong River basin. Water, 14(18), 2803.

Letshele, K. P., Atekwana, E. A., Molwalefhe, L., Ramatlapeng, G. J., & Masamba, W. R. (2023). Stable hydrogen and oxygen isotopes reveal aperiodic non-river evaporative solute enrichment in the solute cycling of rivers in arid watersheds. Science of the Total Environment, 856, 159113

Levin, N. E., et al. (2009). Isotopic ecology of African rivers. Journal of Geophysical Research: Biogeosciences, 114(G3).

Li, L., Yao, T., Yang, W., & Gao, J. (2021). Seasonal isotopic lapse rates and moisture source variation in the Yarlung Tsangpo River Basin, Tibet. Journal of Geophysical Research: Atmospheres, 126(3), e2020JD033569. https://doi.org/10.1029/2020JD033569

Liu, J., Kirchner, J. W., & Feng, X. (2024). Isotopic lapse rates of mountain stream waters and their implications for water source elevation tracing in the Sierra Nevada. Hydrology and Earth System Sciences, 28(2), 331–348. https://doi.org/10.5194/hess-28-331-2024

Makilo, F. M., et al. (1999). "Geology and hydrogeology of the Yaoundé region, Cameroon." Journal of African Earth Sciences, 29(1), 1-14.

Makilo, F. M., et al. (1999). Geology and hydrogeology of the Yaoundé region, Cameroon. Journal of African Earth Sciences, 29(1), 1–14.

Marcelin, M. P., Evariste, N., Donald, N. C., & Armel, C. F. C. (2023). Spatial analysis of gravity data in the basement of the yaounde-yoko area from the global gravity model: Implications on the sanaga fault (South-Cameroon). Open Journal of Geology, 13(7), 623-650.

Maréchal, J. C., et al. (2011). "Groundwater recharge processes in a tropical rainforest environment: A case study from the Nyong River basin, Cameroon." Hydrogeology Journal, 19(4), 855-870.

McGuire, K. J., & McDonnell, J. J. (2006). A review and evaluation of catchment transit time modeling. Journal of Hydrology, 330(3-4), 543-563.

Neba, S. A. (1999). Geology of Cameroon. Backhuys Publishers.

Nkoue Ndondo, G. R., Probst, J. L., Ndjama, J., Ndam Ngoupayou, J. R., Boeglin, J. L., Takem, G. E., ... & Ekodeck, G. E. (2021). Stable carbon isotopes δ 13 C as a proxy for characterizing carbon sources and processes in a small tropical headwater catchment: Nsimi, Cameroon. Aquatic Geochemistry, 27, 1-30.

Nlend, B., Huneau, F., Ngo Boum-Nkot, S., Song, F., Komba, D., Gwodog, B., ... & Fongoh, E. (2023). Review of isotope hydrology investigations on aquifers of Cameroon (Central Africa): What information for the sustainable management of groundwater resources?. Water, 15(23), 4056.

Nyamgerel, Y., Han, Y., Kim, M., Koh, D., & Lee, J. (2021). Review on applications of 17O in hydrological cycle. Molecules, 26(15), 4468.

Nyenje, P. M., & Batelaan, O. (2009). "Climate change impacts and adaptation strategies for water resources management in Africa." Hydrological Sciences Journal, 54(4), 709-723.

Ó Dochartaigh, B. E., et al. (2016). "Regional-scale assessment of groundwater age and residence time in crystalline basement aquifers of Africa." Hydrogeology Journal, 24(5), 1147-1165.

Peralta Vital, J. L., Calvo Gobbetti, L. E., Llerena Padrón, Y., Martínez Luzardo, F. H., Díaz Rizo, O., & Gil Castillo, R. (2024). Integration of Isotopic and Nuclear Techniques to Assess Water and Soil Resources’ Degradation: A Critical Review. Applied Sciences, 14(20), 9189.

Prasad, D., Singh, A., & Patel, N. (2024). Kinetic fractionation effects on δ¹⁸O and δ²H in arid climate rivers during evaporation: Applications of the Craig-Gordon model. Journal of Hydrology, 631, 129647. https://doi.org/10.1016/j.jhydrol.2024.129647

Ren, X., Li, P., He, X., & Zhang, Q. (2024). Tracing the sources and evaporation fate of surface water and groundwater using stable isotopes of hydrogen and oxygen. Science of The Total Environment, 931, 172708.

Roa-García, M. C., Abril, G., Borges, A. V., & Mezger, D. (2020). High CO2 emissions in a small disturbed catchment of the Colombian Andes: Mainstem rivers as reactors of soil-derived CO2. Journal of Geophysical Research: Biogeosciences, 125(6), e2019JG005556.

Rodríguez-Murillo, J. C., Ghosh, S., & Das, A. (2020). Monsoonal isotopic dynamics in river systems of Bangladesh using stable isotopes. Environmental Monitoring and Assessment, 192(7), 446. https://doi.org/10.1007/s10661-020-08419-z

Rouwet, D., Németh, K., Tamburello, G., Calabrese, S., & Issa. (2021). Volcanic lakes in Africa: the VOLADA_Africa 2.0 Database, and implications for volcanic hazard. Frontiers in Earth Science, 9, 717798.

Rouwet, D., Németh, K., Tamburello, G., Calabrese, S., & Issa. (2021). Volcanic lakes in Africa: The VOLADA_Africa 2.0 Database, and implications for volcanic hazard. Frontiers in Earth Science, 9, 717798.

Rozanski, K., Araguás-Araguás, L., & Gonfiantini, R. (1993). Isotopic patterns in modern global precipitation. In Climate change in continental isotope records (pp. 1-36). American Geophysical Union.

Sato, K., et al. (1990). "Geology and mineral resources of Cameroon." Geological Survey of Japan.

Sigha-Nkamdjou, L., et al. (2007). "Isotopic and chemical tracing of water sources in the Sanaga River basin, Cameroon." Journal of African Earth Sciences, 47(1-2), 1-14.

Smith, D. F., Saelens, E., Leslie, D. L., & Carey, A. E. (2021). Local meteoric water lines describe extratropical precipitation. Hydrological Processes, 35(2), e14059.

Soulsby, C., et al. (2006). "Stream water residence time distributions inferred from deuterium and oxygen-18 isotopes in a Scottish mesoscale catchment." Hydrological Processes, 20(15), 3505-3526.

Spencer, R. G., Hernes, P. J., Aufdenkampe, A. K., Baker, A., Gulliver, P., Stubbins, A., ... & Six, J. (2012). An initial investigation into the organic matter biogeochemistry of the Congo River. Geochimica et Cosmochimica Acta, 84, 614-627.

Stevenson, D., Taylor, R. G., & Kabeya, M. (2023). Evaporation-driven isotopic enrichment in East African lake-influenced rainfall: Evidence from the Virunga Mountains. Hydrological Sciences Journal, 68(5), 741–756. https://doi.org/10.1080/02626667.2023.2181201

Takounjou, A. L., et al. (2011). "Quantifying groundwater contribution to streamflow in a tropical watershed using stable isotopes." Water Resources Research, 47(7).

Tweed, S., Leblanc, M., Cartwright, I., Bass, A., Travi, Y., Marc, V., ... & Kumar, U. S. (2019). Stable isotopes of water in hydrogeology. Encyclopedia of Water, John Wiley & Sons, Inc., Hoboken, NJ, USA, 1-10.

Van der Waarde, J. (2007). Integrated river basin management of the Sanaga River, Cameroon. Benefits and challenges of decentralised water management. Unpublished, UNESCO Institute of Hydraulic Engineering, Delft, The Netherlands. www.internationalrivers.org/files/IRBM%20Sanaga.pdf

Wang, X. (2021). Stable Isotope Analysis of Water: applications in water cycle, food authenticity and biological energy expenditure research. [Thesis fully internal (DIV), University of Groningen]. University of Groningen. https://doi.org/10.33612/diss.190899791

White, A. F. (2009). Chemical weathering of silicate minerals in major drainage basins. Chemical Geology, 260(1-2), 1-16.

White, D. S., Vargas, L. A., & Mosquera, G. M. (2024). Isotopic altitudinal gradients in the Peruvian Andes and their implications for hydrological source partitioning. Journal of Hydrology: Regional Studies, 50, 101593. https://doi.org/10.1016/j.ejrh.2024.101593

Wirmvem, M. J., et al. (2017). "Isotopic and hydrochemical assessment of groundwater recharge in the Mayo Tsanaga River basin, Far North Region of Cameroon." Environmental Earth Sciences, 76(21), 732.

Xia, Y., Xiao, J., Wang, W., & Li, Z. (2024). Nitrate dynamics in the streamwater-groundwater interaction system: Sources, fate, and controls. Science of the Total Environment, 918, 170574.

Downloads

Published

2025-07-05

How to Cite

Ayuk, V. T., Wotany , E. R., Wirmverm, M. J., Agyinyi, C., Ngai, J., Kimbi , B., Muka, B., & Mbu, G.- promise. (2025). Application of Stable Isotopes to Investigate Hydrological Processes in Rivers in the Tropical Zones, South-Center, Cameroon. Global Journal of Physical and Applied Sciences, 3(1), 1–20. https://doi.org/10.58425/gjpas.378