Analysis of the Optimal Performance Point Concerning Ambient Temperature and Irradiance for an Off-Grid System in Comparison to Standard Conditions in a PV Power System

Authors

  • Mustafa Fakhir Hussein Faculty of Mechanical Engineering, Department of Energy Conversion.
  • Haneen Hayder Jasim University of Hilla, College of Engineering Technology, Department of Refrigeration and Air Conditioning Egineering.

DOI:

https://doi.org/10.58425/jegs.v4i3.401

Keywords:

Ambient temperature, global loss, irradiation, off-grid system, solar photovoltaic maximum power point (pmpp), pv efficiency,, system performance modeling

Abstract

Aim: Researchers are establishing the challenges associated with power plants of photovoltaic energy systems to enhance their adaptability, durability, and ecological sustainability, aiming to make significant advancements that address current deficiencies in solar energy technology. This study aims to evaluate the performance of an off-grid photovoltaic system (4175 kWP) under varying irradiation and ambient temperature conditions, to determine their effects on system efficiency and global losses.

Methods: Using a simulation model (PVsyst/Matlab/experimental setup), we analyzed system performance under different environmental conditions. The study focused on ambient temperatures of 20°C, 30°C, and 35°C, with irradiation levels of 500, 600, 700, and 800 W/m², in comparison to the standard conditions established by the photovoltaic system, which are 1000 W/m² irradiation and an ambient temperature of 25°C.

Results: The performance at 30°C was 3465.9 kW with a loss of 16.8%, and at 35°C, the Pmpp was 3388.3 kW with an 18.6% loss.

Conclusion: These results underline the necessity of factoring site-specific climatic conditions when designing off-grid PV systems to ensure optimal efficiency and reduced energy losses.

Recommendation: Future studies should incorporate additional external variables, such as wind velocity and incidence angle, to develop a more comprehensive model of PV system performance.

References

Maghraby, Y. R., Ibrahim, A. H., Tayel, A., Azzazy, H. M. E. S., & Shoeib, T. (2025). Towards sustainability via recycling solar photovoltaic Panels, A review. Solar Energy, 285, 113085.

Maghraby, Y. R., Ibrahim, A. H., Tayel, A., Azzazy, H. M. E. S., & Shoeib, T. (2025). Towards sustainability via recycling solar photovoltaic Panels, A review. Solar Energy, 285, 113085.

Al-Khayat, M. H., Majed, A. R., & Al-Qattan, Y. S. (2025). Novel approaches to optimize the layouts of solar photovoltaic and wind power systems to improve their performance considering limited land availability and site-specific features. Sustainable Energy Technologies and Assessments, 74, 104189.

Li, X., Chang, R., Zuo, J., & Zhang, Y. (2023). How does residential solar PV system diffusion occur in Australia? -A logistic growth curve modelling approach. Sustainable Energy Technologies and Assessments, 56, 103060.

Bhandari, K. P., Collier, J. M., Ellingson, R. J., & Apul, D. S. (2015). Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis. Renewable and Sustainable Energy Reviews, 47, 133-141.

Hussein, M. F., Ghlaim, M. F., Hussain, M. F., Arani, A. A. A., & Sheikhzadeh, G. A. (2024). Technical Evaluation and Optimization of the Arrangement of the Small off Grid Photovoltaic System in a Case Study in Iraq. Journal of Electrical Systems, 20(11S), 642-664.

Ahmad, L., Khordehgah, N., Malinauskaite, J., & Jouhara, H. (2020). Recent advances and applications of solar photovoltaics and thermal technologies. Energy, 207, 118254.

Karthick. B Research Scholar, M. Sudhakaran Professor, Chaotic Spiral based Reconfiguration scheme for the Mitigation of Power Loss in Solar Photovoltaic (PV) systems, Results in Engineering (2025), doi: https://doi.org/10.1016/j.rineng.2025.104111

S. Ghosh, S. K. Singh, V. K. Yadav, Experimental investigation of hotspot phenomenon in pv arrays under mismatch conditions, Solar Energy 253 (2023) 219-230.

C. Tubniyom, R. Chatthaworn, A. Suksri, T. Wongwuttanasatian, Minimization of losses in solar photovoltaic modules by reconfiguration under various patterns of partial shading, Energies 12 (1) (2018) 24.

Alghool, D., Bouden, C., Haouari, M., & Trucco, P. (2025). Harnessing enhanced solar efficiency for green hydrogen production: A comparative analysis of PV and PV-T systems. International Journal of Hydrogen Energy, 98, 394-406.

IEA. Executive summary – renewables 2023 – analysis. 2023, https://www.iea. org/reports/renewables-2023/executive-summary.

Chen, Z., Gu, B., Yu, D., & Wang, C. (2025). Quantifying the accelerated diffusion and cost savings of global solar photovoltaic supply chains. iScience, 28(1).

International Renewable Energy Agency (2023). World Energy Transitions Outlook 2023: 1.5C Pathway.

International Energy Agency (2023). World Energy Outlook 2023.

Kwon, S., Kim, H. J., Kim, S., & Hong, S. J. (2025). Sustainability Impact Evaluation of the Recycling of End-of-Life Crystalline Silicon Solar Photovoltaic Panel Waste in South Korea. Sustainability, 17(2), 431.

International Energy Agency. Net Zero by 2050: A Roadmap for the Global Energy Sector; International Energy Agency: Paris, France, 2024; p. 224. Available online: https://www.iea.org/reports/net-zero-by-2050 (accessed on 29 October 2024).

Ember (2024); Energy Institute - Statistical Review of World Energy (2024) – with major processing by Our World in Data. “Electricity generation from hydropower – Ember and Energy Institute” [dataset]. Ember, “Yearly Electricity Data”; Energy Institute, “Statistical Review of World Energy” [original data].

IEA (2024), Global renewable electricity generation by source, 2014-2025, IEA, Paris https://www.iea.org/data-and-statistics/charts/global-renewable-electricity-generation-by-source-2014-2025, Licence: CC BY 4.0]

Hammas, M., Fituri, H., Shour, A., Khan, A. A., Khan, U. A., & Ahmed, S. (2025). A Hybrid Dual-Axis Solar Tracking System: Combining Light-Sensing and Time-Based GPS for Optimal Energy Efficiency. Energies, 18(1), 217.

Abdullah, M. Z., Sudiharto, I., & Eviningsih, R. P. (2020, September). Photovoltaic system MPPT using fuzzy logic controller. In 2020 International Seminar on Application for Technology of Information and Communication (iSemantic) (pp. 378-383). IEEE.

Irfan, M., Zhao, Z. Y., Ahmad, M., & Rehman, A. (2019). A techno-economic analysis of off-grid solar PV system: A case study for Punjab Province in Pakistan. Processes, 7(10), 708.].

Behera, D. D., Das, S. S., Mishra, S. P., Mohanty, R. C., Mohanty, A. M., & Nayak, B. B. (2022). Simulation of solar operated grass cutting machine using PVSYST software. Materials Today: Proceedings, 62, 3044-3050.].

Kumar, R., Rajoria, C. S., Sharma, A., & Suhag, S. (2021). Design and simulation of a standalone solar PV system using PVsyst Software: A case study. Materials Today: Proceedings, 46, 5322-5328.

Salmi, M., Baci, A. B., Inc, M., Menni, Y., Lorenzini, G., & Al-Douri, Y. (2022). Desing and simulation of an autonomous 12.6 kW solar plant in the Algeria’s M’sila region using PVsyst software. Optik, 262, 169294.

Baqir, M., & Channi, H. K. (2022). Analysis and design of solar PV system using Pvsyst software. Materials Today: Proceedings, 48, 1332-1338.

Irwan, Y. M., Amelia, A. R., Irwanto, M., Leow, W. Z., Gomesh, N., & Safwati, I. (2015). Stand-alone photovoltaic (SAPV) system assessment using PVSYST software. Energy Procedia, 79, 596-603.

Belmahdi, B., & El Bouardi, A. (2020). Solar potential assessment using PVsyst software in the northern zone of Morocco. Procedia Manufacturing, 46, 738-745.

Khan, M. A., Islam, N., Khan, M. A. M., Irshad, K., Hanzala, M., Pasha, A. A., & Mursaleen, M. (2022). Experimental and simulation analysis of grid-connected rooftop photovoltaic system for a large-scale facility. Sustainable Energy Technologies and Assessments, 53, 102773.

Abed, M., Reddy, A., Jyothsna, T. R., & Mohammed, N. (2024). Optimal Sizing and Performance Assessment of Stand-alone PV Systems using Optimum Hybrid Sizing Strategy. Results in Engineering, 103793.

Yadav, P., Kumar, N., & Chandel, S. S. (2015, April). Simulation and performance analysis of a 1kWp photovoltaic system using PVsyst. In 2015 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC) (pp. 0358-0363). IEEE.

Farghally, H., Sweelem, E. A., El-Sebah, M. I. A., & Syam, F. A. (2022). Agricultural Grid Connected Photovoltaic System Design and Simulation in Egypt by using PVSYST Software. WSEAS Trans. Circuits Syst, 21, 306-315.

Ramoliya, J. V. (2015). Performance evaluation of a grid-connected solar photovoltaic plant using PVSYST software. Journal of Emerging Technologies and Innovative Research (JETIR), 2(2), 7.

Wang, F., Li, R., Zhao, G., Xia, D., & Wang, W. (2024). Simulation test of 50 MW grid-connected “Photovoltaic+ Energy storage” system based on pvsyst software. Results in Engineering, 22, 102331.

Kumar, N. M., Kumar, M. R., Rejoice, P. R., & Mathew, M. (2017). Performance analysis of 100 kWp grid-connected Si-poly photovoltaic system using PVsyst simulation tool. Energy Procedia, 117, 180-189.

Juaidi, A., Kobari, M., Mallak, A., Titi, A., Abdallah, R., Nassar, M., & Albatayneh, A. (2023). A comparative simulation between monofacial and bifacial PV modules under palestine conditions. Solar Compass, 8, 100059.

Al-Smairan, M., Khawaldeh, H. A., Shboul, B., & Almomani, F. (2024). Techno-enviro-economic analysis of grid-connected solar powered floating PV water pumping system for farmland applications: A numerical design model. Heliyon, 10(18).

Aryal, A., & Bhattarai, N. (2018). Modeling and simulation of 115.2 kWp grid-connected solar PV system using PVSYST. Kathford Journal of Engineering and Management, 1(1), 31-34.

Spea, S. R., & Khattab, H. A. (2019, December). Design sizing and performance analysis of stand-alone PV system using PVSyst software for a location in Egypt. In 2019 21st International Middle East Power Systems Conference (MEPCON) (pp. 927-932). IEEE.

Kapoor, S., Sharma, A. K., & Porwal, D. (2021, November). Design and simulation of 60kWp solar on-grid system for rural area in Uttar-Pradesh by “PVsyst”. In Journal of Physics: Conference Series (Vol. 2070, No. 1, p. 012147). IOP Publishing.

Barua, S., Prasath, R. A., & Boruah, D. (2017). Rooftop solar photovoltaic system design and assessment for the academic campus using PVsyst software. International Journal of Electronics and Electrical Engineering, 5(1), 76-83.

Al Janabi, S. M. D., & Jumaa, F. A. (2024). Sizing of Photovoltaic Standalone System In Mandali City/Iraq: A Case Study. Salud, Ciencia y Tecnología-Serie de Conferencias, (3), 835.

Mahmood, A. L. (2019). Design and simulation of stand-alone pv system for electronic and communications engineering department laboratories in Al-Nahrain University. EAI endorsed Transactions on Energy web, 6(22), e9-e9.

Shrivastava, A., Sharma, R., Saxena, M. K., Shanmugasundaram, V., & Rinawa, M. L. (2023). Solar energy capacity assessment and performance evaluation of a standalone PV system using PVSYST. Materials Today: Proceedings, 80, 3385-3392.

Islam, M. S., Islam, F., & Habib, M. A. (2022). Feasibility analysis and simulation of the solar photovoltaic rooftop system using PVsyst software. International Journal of Education and Management Engineering, 12(6), 21.]

AL-SARRAJ, A. H. M. A. D., & Yigit, F. (2024). Modeling the use of PVsyst software for a stand-alone PV solar system" off grid" with batteries by utilizing silicon hetero-junction technology (HJT) panels in Iraq/Basra. Al-Rafidain Journal of Engineering Sciences, 32-42.].

Rady, N., Shevlyugin, M., & Maytham, K. (2024). Examining the northern region of Iraq and the imperative for establishing photovoltaic power stations. In E3S Web of Conferences (Vol. 494, p. 03012). EDP Sciences.]

Razmjoo, A., Ghazanfari, A., Østergaard, P. A., & Abedi, S. (2023). Design and analysis of grid-connected solar photovoltaic systems for sustainable development of remote areas. Energies, 16(7), 3181.]

El Abagy, A., Emeara, M., & AbdelGawad, A. (2021). Orientation-optimization simulation for solar photovoltaic plant of Cairo international airport. The Egyptian International Journal of Engineering Sciences and Technology, 33(Mechanical Engineering), 45-68.

Ayoush, A. F. E., & Abdullah, M. N. (2022). Design and economic analysis of a grid-connected photovoltaic system in Saudi Arabia using PVsyst Software. Journal of Electronic Voltage and Application, 3(1), 54-68.]

Mohammadi, S. A. D., & Gezegin, C. (2022). Design and simulation of grid-connected solar PV system using PVSYST, PVGIS and HOMER software. International Journal of Pioneering Technology and Engineering, 1(01), 36-41.]

Rekhashree, D. J., & Naganagouda, H. (2018). Study on design and performance analysis of solar PV rooftop standalone and on grid system using PVSYST. Int. Res. J. Eng. Technol. (IRJET), 5(07), 41-48.

Akshai, K. N. B., & Senthil, R. (2020, August). Economic evaluation of grid connected and standalone photovoltaic systems using PVSyst. In IOP Conference Series: Materials Science and Engineering (Vol. 912, No. 4, p. 042074). IOP Publishing[59].

Mustafa Faisal Ghlaim, Asmaa Miran Hussein, & Mustafa Fakhir Hussein. (2025). Reducing Carbon Footprints with On-Grid Photovoltaic Systems: A Path to Sustainability. International Journal of Emerging Research in Engineering, Science, and Management, 4(1), 01–10. https://doi.org/10.58482/ijeresm.v4i1.1

Ghlaim, M. F., Fakhir, M., & Jasim, H. Advancing Sustainable Opportunities with Photovoltaic Systems in Karbala, Iraq: A Proposal for a Connected PV System.‏

Salas, V., Olías, E., Barrado, A., & Lazaro, A. (2006). Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Solar energy materials and solar cells, 90(11), 1555-1578.

Islam, H., Mekhilef, S., Shah, N. B. M., Soon, T. K., Seyedmahmousian, M., Horan, B., & Stojcevski, A. (2018). Performance evaluation of maximum power point tracking approaches and photovoltaic systems. Energies, 11(2), 365.],

Huynh, D.C.; Dunnigan, M.W. Development and Comparison of an Improved Incremental Conductance Algorithm for Tracking the MPP of a Solar PV Panel. IEEE Trans. Sustain. Energy 2016, 7, 1421–1429. [CrossRef].

Blazev, A.S. Photovoltaics for Commercial and Utilities Power Generation; Lulu Press, Inc.: Morrisville, NC, USA, 2013.

Parida, B., Iniyan, S., & Goic, R. (2011). A review of solar photovoltaic technologies. Renewable and sustainable energy reviews, 15(3), 1625-1636.

Downloads

Published

2025-08-26

How to Cite

Hussein, M. F., & Jasim, H. H. (2025). Analysis of the Optimal Performance Point Concerning Ambient Temperature and Irradiance for an Off-Grid System in Comparison to Standard Conditions in a PV Power System. Journal of Environmental and Geographical Studies, 4(3), 1–17. https://doi.org/10.58425/jegs.v4i3.401